3 research outputs found

    Exploring Application Opportunities for Smart Vehicles in the Continuous Interaction Space Inside and Outside the Vehicle

    Get PDF
    We describe applications that implement interactions between the driver and their smart vehicle in a continuous interaction space characterized by the physical distance to the vehicle and by the smart devices that implement those interactions. Specifically, we demonstrate the principles of smart vehicle proxemics with smart rings, smartwatches, smartphones, and other devices employed to interact with the in-vehicle infotainment system while the driver traverses five distinctly identifiable zones, from inside the vehicle to the personal, proximal, distant, and covert zone outside the vehicle. We present engineering details of our applications that capitalize on standardized web technology (HTML, CSS, JavaScript), communication protocols (WebSocket), and data formats (JSON) and, thus, enable straightforward extension to accommodate other smart devices for new interactions with smart vehicles. We also point to future opportunities for designing interactions from a distance and function of the distance between the driver and their vehicle

    Smart Vehicle Proxemics: A Conceptual Framework Operationalizing Proxemics in the Context of Outside-the-Vehicle Interactions

    Get PDF
    We introduce smart vehicle proxemics, a conceptual framework for interactive vehicular applications that operationalizes proxemics to outside-the-vehicle interactions. We identify four zones around the vehicle affording different kinds of interactions and discuss the corresponding conceptual space along three dimensions (physical distance, interaction paradigm, and goal). We study the dimensions of this framework and synthesize our findings regarding drivers’ preferences for (i) information to obtain from their vehicles at a distance, (ii) system functions of their vehicles to control remotely, and (iii) devices (e.g., smartphones, smartglasses, smart key fobs) for interactions outside the vehicle. We discuss the positioning of smart vehicle proxemics in the context of proxemic interactions more generally, and expand on the dichotomy and complementarity of outside-the-vehicle and inside-the-vehicle interactions for new applications enabled by smart vehicle proxemics
    corecore